Yang Sering Berkunjung

Cari Blog Ini

Entri Populer

Selasa, 07 April 2015

Understanding Standards and Standards Organizations



This chapter describes architectures, standards definitions, and protocols related to performance and accounting. Starting with the big picture, this chapter drills down into definitions and specifications for data collection, data representation, and service notions. This chapter is also an overview of the different standards bodies and architectures, along with the concepts and principles of each protocol. This chapter also includes references for further investigation.
Instead of following the "classic" book structure of defining all standards in an introductory chapter, we decided to start by defining the requirements, followed by the collection methodology. With the use cases in mind, this is the right moment to introduce standards. The question "Why are standards required?" leads toward two answers:
  • If you operate a single-vendor equipment environment, you might not see a big need for standards, because products are expected to interoperate as long as you stay with the same vendor. Interoperability between different products or versions from one vendor (such as a Cisco IOS version) is still an important requirement.
  • In a multivendor environment, you expect vendors to agree on at least a minimum common denominator for functionality, which is what standards provide.
Which approach is better? Probably both have their pros and cons; the answer mainly depends on your business requirements. If you change your perspective slightly, the need for standards becomes evident. For example, suppose you travel abroad and rent a car. You expect the traffic rules to be similar to those in your home country. Cars might drive on the "wrong" side of the road, but you expect a red traffic light to mean "stop" and a green one to mean "go." If you stay in a hotel on your trip, you expect warm water to be associated with a red symbol, while blue stands for cold water. What is the conclusion? Standards are helpful to provide a kind of "lingua franca" to ensure that participants talk about the same subject.
Data normalization is another benefit of a standard. Suppose you ask two people what the temperature is. One says 68, and the other says 20. Who is right? Both are correct if the first person means Fahrenheit and the second person means Celsius. The same applies to metering data from network elements. Unless all devices apply the same measurement and report the same information with the same unit, normalization is required to turn raw data into information. For example, in a networking scenario, an ISP offers SLAs to an enterprise customer, and both parties measure the service with different tools. In the worst case, the results are completely different, leading to finger-pointing and misapprehension. As another example, two service providers collect accounting data for a peering agreement but use accounting measurement techniques that collect records with different data units. At the end of the month, different collection results lead to misapprehension. Data normalization can help address these issues.
For this book, the authors applied the following definition of a standard: "Obtaining common information across multiple network elements by using common terminology, protocols, and measurement units rather than each network element using its own syntax and reporting scheme."
Bridging the gap to network management, one person might interpret "management" to mean device monitoring, and someone else might consider "management" to mean the active part of modifying device configuration. When selecting the required Network Management System (NMS) applications, operators are sometimes overwhelmed by the functionality offered by applications. When asked what they are looking for, the answer might be "Just something to manage my complete network." In these cases, a helpful approach is to step back and ask, "Which functionality is required?", "Which devices need to be managed?", "Which services are planned?", and more. Afterwards, the answers can be mapped to a standard model, such as Fault, Configuration, Accounting, Performance, and Security (FCAPS)—as introduced in Chapter 1, "Understanding the Need for Accounting and Performance Management"—to categorize and prioritize the required functionality. As a last step, potential NMS applications are also mapped against the selected model, such as the Telecommunications Management Network (TMN) FCAPS model or the TMF eTOM model, to identify which product addresses which requirements.
Two types of standards need to be clearly distinguished:
  • A de facto industry standard
  • A formally committed standard from an official standards organization
When the majority of users or vendors accept and implement the same technical specification defined outside a standards body, it becomes a de facto standard. An example is IBM's Systems Networking Architecture (SNA), which originally defined networking only for IBM devices but was also implemented by other vendors. Formal standards are defined by global, regional, or national standards bodies. The International Telecommunications Union (ITU) is an international organization within the United Nations System where governments and the private sector coordinate global telecom networks and services. The ITU Telecommunication Standardization Sector (ITU-T) was created on March 1, 1993, replacing the former International Telegraph and Telephone Consultative Committee (CCITT), which originated in 1865.
In addition to the formal standard definitions and vendor de facto standards, specifications are defined by consortia. If a consortium's proposal is widely accepted, it becomes a de facto standard. These consortia are groups where different vendors (and sometimes also large customers, service providers, system integrators, and others) agree on a common definition and implement it afterwards. Examples are the TeleManagement Forum (TMF), the World Wide Web Consortium (W3C), Internet Protocol Detail Record (IPDR), Distributed Management Task Force (DMTF), and others. In all these cases, interoperability is gained if different vendors implement the same specification.
If you investigate a little further into standards organizations, you will realize the variety of standards organizations, some of which have overlapping focus areas and competing standards definitions. Why are there so many standards? This is not a simple question to answer; multiple answers are possible. One reason for the existence of different standards organizations is history. After the CCITT defined interoperability standards for Post, Telephone, and Telegraph (PTT) organizations, a need for Internet standards evolved, and the Internet Engineering Task Force (IETF) was founded. To meet the need for enterprise management standards, the DMTF was founded. The emerging web technologies required common standards, so the W3C was set up. Another reason for diversity is political discussions and disagreements within groups. Sometimes it is easier to define a new standard than to come to an agreement across the industry. Introducing competition by founding a new standards group can also increase the pace of another group.
With several different standards groups and organizations in place and a multitude of standards, the next question is how to identify the "right" standard. This requires defining the perspective first: a customer's request, a system integrator's offering, or a vendor's implementation? From an end-user perspective, a simple approach is to select the standard that you like the most; however, there might be better selection criteria.
Best practice suggests starting with the requirements. Why are you looking for standards that provide interoperability in a multivendor environment? Do you want investment protection to replace one vendor's network element with another vendor's? In this case, your management software also needs to support multiple vendors' equipment. Are you looking for operational transparency, which means you want the same management and reporting functionalities across vendors? This requires device instrumentation to be standardized. How do you integrate different management applications? If they use standard application programming interfaces (API), integration takes less effort than different APIs for each application. In summary, selecting the "right" standard depends on various criteria:
  • Business requirements
  • Single-vendor or multivendor strategy
  • Device instrumentation
  • Application interoperability
  • Technical feasibility—identifying if implementing a function is technically achievable
  • Common sense—requesting a standard just for the heck of it is not a wise decision
Taking a top-down approach to accounting and performance management, mainly two specifications are relevant to the big picture: the ITU-T TMN/FCAPS model and the TMF eTOM definition.
Information modeling also has two groups: the DMTF and TMF with their information model definitions of the Common Information Model (CIM; DMTF) and Shared Information/Data (SID; TMF). From a protocol perspective the two relevant standards bodies are the IETF (SNMP, AAA, IPFIX, PSAMP, and others) and the ITU (CMIP/CMISE and GDMO). These protocols are discussed later.
A top-down approach to accounting and performance management includes three components, which are discussed in detail in subsequent chapters:
  • Framework/architecture:
    - The ITU with the TMN/FCAPS model.
    - The TMF with the definition of eTOM. Note that ITU-T M.3050 recommends eTOM as well.
  • Information modeling:
    - The DMTF with CIM.
    - The TMF with SID.
  • Protocols:
    - The IETF with SNMP, AAA, IPFIX, PSAMP, and others.
    - The ITU with CMIP/CMISE and GDMO.

Architectural and Framework Standards: The TMN/FCAPS Model (ITU-T)


The ITU-T introduced the term Telecommunications Management Network (TMN) to describe a separate network that has interfaces to the telecommunication network (or production network). TMN defines interconnection points between the two networks and specifies management functionalities. The best description of how to operate a TMN is defined by the ITU-T recommendations M.3010, M.3400, and X.700.
The purpose of a framework is to describe the big picture, illustrate different functional areas, and identify how they interoperate. The focus of ITU-T M.3400 and X.700 is the specification and classification of management functionalities only. For example, it does not define whether syslog or trap messages are mandatory for event notifications. Neither does it define specific formats for storing accounting records. These details are defined in the lower-level specifications standards. In addition to the framework of M.3400, another recommendation (M.3010) defines the principles for a TMN. It includes details of a Data Communications Network (DCN) as a transport vehicle between the management applications and network elements. A DCN is also known as out-of-band-management, which separates user traffic from management traffic. Figure 3-1 illustrates the relationship between the telecommunications network, also called the service infrastructure, and the TMN.

Figure 3-1. TMN and Telecommunications Networks
[View full size image]


Another relevant aspect of M.3010 is the concept of layers. Network management tasks are grouped into functional areas such as FCAPS. In addition, a logical layered architecture (LLA) consists of five management layers:
  • Network Element Layer (NEL) defines interfaces for the network elements, instantiating functions for device instrumentation, ideally covering all FCAPS areas.
  • Element Management Layer (EML) provides management functions for network elements on an individual or group basis. It also supports an abstraction of the functions provided by the network element layer. Examples include determining equipment errors, measuring device temperatures, collecting statistical data for accounting purposes, and logging event notifications and performance statistics.
  • Network Management Layer (NML) offers a holistic view of the network, between multiple pieces of equipment and independent of device types and vendors. It manages a network as supported by the element management layer. Examples include end-to-end network utilization reports, root cause analysis, and traffic engineering.
  • Service Management Layer (SML) is concerned with, and responsible for, the contractual aspects of services that are being provided to customers. The main functions of this layer are service creation, order handling, service implementation, service monitoring, complaint handling, and invoicing. Examples include QoS management (delay, loss, jitter), accounting per service (VPN), and SLA monitoring and notification.
  • Business Management Layer (BML) is responsible for the total enterprise. Business management can be considered a goal-setting approach: "What are the objectives, and how can the network (and network management specifically) help achieve them?"
Figure 3-2 shows the relationship between the different layers as well as the relationship with the FCAPS model. Each management layer is responsible for providing the appropriate FCAPS functionality according to the layer definition. Each layer communicates with the layers above and below it.

Figure 3-2. ITU-T M.3010: TMN Logical Layer Architecture


Now that the different layers of the TMN model have been identified, the functionality of each FCAPS area is described next. The TMN architecture has a strong relationship to Open Systems Interconnection (OSI) standards and frameworks. ISO 7498-4 defines the framework, concepts, and terminology of the OSI Management standards: "Information Processing Systems - OSI - Basic Reference Model - Part 4: Management Framework."
The ITU-T M.3400 recommendation is one document within the M series. It specifies five management functional areas (FCAPS):
  • Fault management— Detect, isolate, notify, and correct faults encountered in the network.
  • Configuration management— Configure aspects of network devices, such as configuration file management, inventory management, and software management.
  • Accounting management— Collect usage information of network resources.
  • Performance management— Monitor and measure various aspects of performance so that overall performance can be maintained at a defined level.
  • Security management— Secure access to network devices, network resources, and services to authorized individuals.
The following section provides more details about each area. This chapter covers the FCAPS model extensively, because it sets the foundation for network management in general and provides a good understanding of accounting and performance management and their potential relationship to each other. Therefore, not only the accounting and performance parts of FCAPS are addressed, but the full model. Afterwards, other standards are discussed solely based on their specific relationship to accounting and performance management. Also, note that there is not an exact match between the brief FCAPS summary in Chapter 1 and the extended details for accounting and performance in this chapter. Chapter 1 provides the authors' definitions from a network element perspective, and this chapter covers FCAPS functionality from all layers of the TMN model.

Fault Management

Fault management is a set of functions that enable the detection, isolation, and correction of abnormal operation of the telecommunication network. The quality assurance measurements for fault management include component measurements for Reliability, Availability, and Survivability (RAS). Fault management consists of the following functions:
  • RAS quality assurance establishes the reliability criteria that guide the design policy for redundant equipment (a responsibility of configuration management) and the policies of the other function groups in this area.
  • Alarm surveillance describes the capability to monitor network element failures in near-real time.
  • Fault localization describes where the initial failure information is insufficient for fault localization. It has to be augmented with information obtained by additional failure localization routines at the application level.
  • Fault correction transfers data concerning the repair of a fault and the control of procedures that use redundant resources to replace equipment or facilities that have failed.
  • Testing can be carried out in two ways. In one case, a network element analyzes equipment functions, where processing is executed entirely within the network element. Another method is active testing of external device components, such as circuits, links, and neighbor devices.
  • Trouble administration transfers trouble reports originated by customers and trouble tickets originated by proactive failure-detection checks. It supports action to investigate and clear the problem and provides access to the status of services and the progress in clearing each problem.

Configuration Management

Configuration management provides functions to identify, collect configuration data from, exercise control over, and provide configuration data to network elements. Configuration management supports the following functions:
  • Installing the physical equipment and logical configurations.
  • Service planning and negotiation, which addresses planning for the introduction of new services, changing deployed service features, and disconnecting existing services.
  • Provisioning, which consists of necessary procedures to bring equipment into service but does not include installation. As soon as the unit is ready for service, the supporting programs are initialized via the TMN. The state of the unit (in service, out of service, standby, or reserved) and selected parameters may also be controlled by provisioning functions.
  • Status and control where the TMN provides the capability to monitor and control certain aspects of the network element (NE) on demand. Examples include checking or changing an NE's service state (in service, out of service, or standby) or the state of one of its subparts and initiating diagnostic tests within the NE. Normally, a status check is provided in conjunction with each control function to verify that the resulting action has taken place. When associated with failure conditions, these functions are corrective in nature (such as service restoration).
  • Network planning and engineering deals with functions associated with determining the need for growth in capacity and the introduction of new technologies. Planning and engineering are examples of functions across multiple areas, because they relate to the performance section from a monitoring perspective and to the configuration section from an enforcement perspective.

Accounting Management

Accounting management lets you measure the use of network services and determine costs to the service provider and charges to the customer for such use. It also supports the determination of charges for services. Accounting management includes the following functions:
  • Usage measurement— Consists of the following subfunctions:
    - Planning and management of the usage measurement process
    - Network and service usage aggregation, correlation, and validation
    - Usage distribution
    - Usage surveillance
    - Usage testing and error correction
    - Measurement rules identification
    - Usage short-term and long-term storage
    - Usage accumulation and validation
    - Administration of usage data collection
    - Usage generation
  • Tariffing and pricing— A tariff is used to determine the amount of payment for services usage.
  • Collections and finance— Functionality for administering customer accounts, informing customers of balances and payment dates, and receiving payments.
  • Enterprise control— This group supports the enterprise's financial responsibilities, such as budgeting, auditing, and profitability analysis.

Performance Management

Performance management provides functions to evaluate and report on the behavior of telecommunication equipment and the effectiveness of the network or network element. Its role is to gather and analyze statistical data for the purpose of monitoring and correcting the behavior and effectiveness of the network, network elements, or other equipment, and to aid in planning, provisioning, maintenance, and quality measurement. Performance management includes the following functions:
  • Performance quality assurance— Includes quality measurements, such as performance goals and assessment functions.
  • Performance monitoring— This component involves the continuous collection of data concerning the performance of the network element. Acute fault conditions are detected by alarm surveillance methods. Very low rate or intermittent error conditions in multiple equipment units may interact, resulting in poor service quality, and may not be detected by alarm surveillance. Performance monitoring is designed to measure the overall quality, using monitored parameters to detect such degradation. It may also be designed to detect characteristic patterns of impairment before the quality has dropped below an acceptable level. Performance monitoring includes the following functions:
    - Performance monitoring policy
    - Network performance monitoring event correlation and filtering
    - Data aggregation and trending
    - Circuit-specific data collection
    - Traffic status
    - Threshold crossing alert processing
    - Trend analysis
    - Performance monitoring data accumulation
    - Detection, counting, storage, and reporting
  • Performance management control— This group includes the setting of thresholds and data analysis algorithms and the collection of performance data. It has no direct effect on the managed network. For network traffic management and engineering, this includes functions that affect the routing and processing of traffic.
  • Performance analysis— The collected performance records may require additional processing and analysis to evaluate the entity's performance level. Therefore, performance analysis includes the following functions:
    - Recommendations for performance improvement
    - Exception threshold policy
    - Traffic forecasting (trending)
    - Performance summaries (per network and service, and traffic-specific)
    - Exception analysis (per network and service, and traffic-specific)
    - Capacity analysis (per network and service, and traffic-specific)
    - Performance characterization

Security Management

Security is required for all functional areas. Security management consists of two main functions:
  • Security services for communications provide authentication, access control, data confidentiality, data integrity, and nonrepudiation. These may be exercised in the course of any communications between systems and between users or customers and systems. In addition, a set of pervasive security mechanisms are defined that are applicable to any communication, such as event detection, security audit-trail management, and security recovery.
  • Security event detection and reporting reports activities that may be construed as a security violation (unauthorized user, physical tampering with equipment) on higher layers of security applications.
Security management includes the following functions:
  • Prevention
  • Detection
  • Containment and recovery
  • Security administration

The TMN Framework

The framework shown in Figure 3-3 brings it all together. The different logical layers sit on top of each other; each layer is responsible for implementing the FCAPS functionality and passes the collected information to the next layer. From a customer's applicability perspective, after identifying and prioritizing the requirements, you can map various network management products to this matrix and identify what is required to meet your needs.

Figure 3-3. TMN Management Layers and FCAPS
[View full size image]



From the perspective of this book, relevant layers of the TMN architecture are the Network Element Layer (NEL); the Element Management Layer (EML), related to similar device types; the Network Management Layer (NML), related to mediation; and the Service Management Layer (SML), related to service monitoring and accounting. The Business Management Layer (BML) is outside the scope of this book. If you're interested, you're encouraged to study the ITU-T M series for more details.
Note that the FCAPS model describes the conceptual model of functional areas; it does not define accounting and performance standards for data collection. Therefore, a second level of standards is required for data collection. At the network element layer, it can be SNMP or IPFIX. IPDR is appropriate at the Element Management Layer.

Selasa, 09 Desember 2014

ASSURANCE in eTOM

Operations mempunyai empat peng-grupan proses vertical yaitu:Fulfillment, Assurance, dan Billing (FAB), telah diintegrasikan untuk memberikan prioritas proses ke pelanggan sebagai fokus dari perusahaan. Tambahan vertical Operations Support & Readiness telah ditambahkan untuk mendukung proses FAB, memisahkan proses back office dari front office dan memastikan bahwa proses FAB memenuhi permintaan pelanggan tanpa delay.




Definisi

Customer Relationship Management:

            Suatu pendekatan baru dalam mengelola korporasi dalam pelanggan pada level bisnis sehingga dapat memaksimumkan komunikasi, pemasaran, melalui pengelolaan berbagai kontak yang berbeda dengan pelanggan. Pendekatan ini memungkinkan untuk mempertahankan pelanggan dan memberikan nilai tambah terus menerus pada pelanggan selain itu juga memperoleh keuntungan yang berkelanjutan.

            CRM mengkombinasikan kebijakan, proses, dan strategi yang diterapkan organisasi menjadi satu kesatuan yang digunakan untuk melakukan interaksi dengan pelanggan dan juga menelusuri informasi pelanggan. Implementasi CRM menggunakan teknologi informasi untuk menarik pelanggan baru yang memberi nilai pada perusahaan sehingga mereka memiliki keterikatan terdahap perusahaan.

Service Management & Operation:
           
            Adalah serangkaian kegiatan yang menghasilkan nilai dalam bentuk barang dan jasa dengan mengubah input menjadi output.

            Manajemen operasi adalah penerapan ilmu manejemen untuk mengatur kegiatan produksi atau operasi agar dapat dilakukan secara efisien.

Resource Management & Operations:
           
            Adalah metode untuk memperoleh pandangan yang lebih baik kedalam biaya barang dan jasa untuk menghasilkan perusahaan dengan kontrol keuangan yang luas yang arus pemeliharaan perbaikan dan operasi proses pengadaan ( barang tidak langsung ) dan kontrol rantai pasokan.

Supplier/Partner Relationship Management:
          
            Adalah sistematik penilaian enterprise wide asset dan kemampuan pemasok sehubungan dengan strategi bisnis secara keseluruhan kegiatan untuk terlibat dengan pemasok yang berbeda, perencanaan dan pelakasanaan semua interaksi dengan pemasok, secara terkoordinasi diseluruh siklus hubungan, untuk memaksimalkan nilai nyata.



Hubungan antara Assurance dengan CRM, SMO, RMO, dan SRM

(Problem Handling) CRM dengan Assurance

            Proses penanganan masalah bertanggung jawab untuk menerima laporan masalah dari pelanggan, menyelesaikan mereka untuk kepuasan pelanggan dan memberikan Status berarti pada perbaikan dan / atau kegiatan restorasi kepada pelanggan. Mereka juga bertanggung jawab untuk kontak pelanggan dan dukungan dalam kaitannya dengan layanan yang mempengaruhi masalah yang terdeteksi oleh sumber daya atau melalui analisis, termasuk proaktif menginformasikan pelanggan dan menyelesaikan spesifik ini masalah untuk kepuasan pelanggan.

Pelanggan QoS / Manajemen SLA (CRM - A)

            Pelanggan QoS / proses Manajemen SLA mencakup pemantauan, pengelolaan dan pelaporan disampaikan vs Kualitas kontrak of Service (QoS), sebagaimana didefinisikan dalam Deskripsi Layanan organisasi, kontrak pelanggan atau katalog produk. Mereka juga prihatin dengan kinerja organisasi dan produk dan jasa dalam kaitannya dengan Perjanjian Level Layanan nya (SLA) untuk contoh layanan tertentu, dan dokumen-layanan terkait lainnya. Mereka termasuk parameter operasional seperti jaringan dan kinerja sumber daya dan ketersediaan, tetapi juga mencakup kinerja di semua parameter layanan yang kontrak atau peraturan, misalnya,% Penyelesaian pada Waktu untuk Pesanan Permintaan, waktu untuk memperbaiki komitmen, Kinerja kontak pelanggan. Kegagalan untuk memenuhi SLA kontrak dapat menyebabkan penyesuaian penagihan, yang ditangani oleh Penagihan dan Pengelolaan Koleksi.

Layanan Masalah Manajemen (SM & O - A)

            Layanan Masalah proses Manajemen segera merespon pelanggan mempengaruhi masalah layanan atau kegagalan untuk meminimalkan efeknya terhadap pelanggan, dan memohon pemulihan layanan sesegera mungkin. Mereka mencakup pelaporan masalah, membuat memperbaiki sementara atau solusi, mengisolasi akar penyebab dan bertindak untuk mengatasinya.

Analisis Kualitas Pelayanan, Aksi dan Pelaporan (SM & O - A)

            Service Quality Analisis, dan Pelaporan Aksi proses mencakup memantau, menganalisis dan mengendalikan kinerja pelayanan yang dirasakan oleh semua pelanggan dari kelas layanan. Proses ini bertanggung jawab untuk memulihkan kinerja pelayanan ke tingkat yang ditentukan dalam SLA atau jasa lainnya deskripsi sesegera mungkin.

Manajemen Sumber Daya Masalah (RM & O - A)

            Sumber Masalah proses manajemen bertanggung jawab untuk hari-hari pengelolaan masalah dengan kelompok sumber daya (resource kelas), dan memastikan bahwa sumber daya yang bekerja secara efektif dan efisien. Tujuan dari proses ini adalah untuk proaktif menangani masalah sumber daya, sebelum keluhan yang diterima tentang layanan yang terkena dampak.


Sumber Restorasi (RM & O - A)

            Sumber proses Restorasi kesepakatan dengan menyelesaikan masalah dengan kelompok sumber daya, sehingga kemampuan sumber daya dipulihkan.

S / P Soal Pelaporan dan Manajemen (S / PRM - A)

            S / P Soal Pelaporan dan proses manajemen mengelola masalah, apakahdiidentifikasi dalam perusahaan atau diberitahu oleh pemasok. Proses laporan masalah masalah atau kesulitan untuk tiket pemasok dan mitra organisasi dalam rantai nilai, melacak mereka, dan memastikan tepat waktu dan benar restorasi dan perbaikan. Bandara S / P Soal Pelaporan dan proses Manajemen antarmuka dengan proses CRM pemasok Soal Penanganan.

S / P Manajemen Kinerja (S / PRM - A)

            S / P Manajemen Kinerja proses track, mengukur dan melaporkan pemasok dan mitra kinerja. Bandara S / PRM proses Kinerja S / P Proses manajemen antarmuka dengan proses CRM pemasok dari Pelanggan QoS Manajemen / SLA.


Kelompok :
Adinda, Adriza, Citra, Desti, Enis, Riana
http//:www.imtelkom.ac.id

Resource Management in Telecommunication : eTOM (Fulfillment)

Mia Savira Karthin
110400254
eTOM
Image
eTOM terbagi menjadi dua perspektif yang berbeda pada pengelompokan detail proses elemennya, yaitu:
1. Proses secara vertical, merepresentasikan tentang gambaran proses end-to-end yang dibutuhkan untuk mendukung pelanggan dan manajemen bisnis, seperti seluruh elemen yang terlibat pada keseluruhan aliran billing ke pelanggan.
2. Proses secara horizontal, merepresentasikan tentang gambaran fungsional proses yang terkait dengan bisnis, seperti yang terlibat dalam manajemen supply chain.
Operations mempunyai empat proses vertikal, yaitu Assurance, dan Billing (FAB) yang telah diintegrasikan untuk memberikan prioritas proses ke pelanggan sebagai fokus dari perusahaan dan Operations Support & Readiness yang telah ditambahkan untuk mendukung proses FAB, memisahkan proses back office dari front office dan memastikan bahwa proses FAB memenuhi permintaan pelanggan tanpa adanya keterlambatan (delay).
Fulfillment
Image
Proses ini bertanggung jawab untuk menyediakan produk sesuai permintaan pelanggan dengan cara yang benar dan tepat waktu. Menerjemahkan bisnis pelanggan atau kebutuhan pribadi menjadi suatu solusi, yang dapat disampaikan dengan menggunakan produk tertentu dalam portofolio perusahaan. Proses ini juga memberitahukan tentang status pemesanan produk yang dilakukan oleh pelanggan dan memastikan selesai tepat waktu sehingga dapat memuaskan pelanggan.
Marketing Fulfillment Response (CRM – F)
Marketing Fulfillment Response merupakan proses yang bertanggung jawab terhadap masalah dan distribusi dari jaminan pemasaran (seperti kupon, premium, sampel, mainan, selebaran, dll) yang ditujukan langsung untuk pelanggan.
Selling (CRM – F)
Proses penjualan bertanggung jawab untuk mengelola prospek, kualifikasi dan pendidikan dari pelanggan dan untuk menyesuaikan harapan dari pelanggan dengan produk,  layanan dan kemampuan untuk menyampaikan yang diberikan oleh perusahaan. Proses ini juga mengelola respon untuk pelanggan RFPs.
Order Handling (CRM – F)
Proses penanganan ini bertanggung jawab untuk menerima dan mengeluarkan perintah. Mereka berurusan dengan pre-order, penentuan kelayakan, otorisasi kredit, penerbitan pesanan, status pesanan dan pelacakan, update pelanggan pada kegiatan ketertiban dan pemberitahuan pelanggan pada urutan penyelesaian.
Service Configuration and Activation (SM&O – F)
Proses yang mencakup instalasi dan konfigurasi layanan bagi pelanggan, termasuk instalasi peralatan di lokasi pelanggan. Mereka juga mendukung re-konfigurasi layanan (baik karena permintaan pelanggan atau penyelesaian masalah) setelah dilakukannya instalasi layanan awal. Hal ini dapat mencakup memodifikasi kapasitas dan konfigurasi ulang dalam menanggapi permintaan dari penyedia lain.
Resource Provisioning and Allocation to Service Instance (RM&O – F)
Penyediaan sumber daya dan Alokasi untuk proses layanan yang mencakup konfigurasi sumber daya, dan logis sumber penyediaan untuk nasabah perorangan. Proses ini meliputi pembaharuan sumber daya dari persediaan database untuk mencerminkan sumber daya yang digunakan untuk pelanggan tertentu.
S/P Buying (S/PRM – F)
Proses S/P Buying bertanggung jawab untuk mengetahui apa yang dibutuhkan dari pemasok dan mitra kerja untuk melakukan keputusan pembelian. Proses ini mengeluarkan Request for Proposal (RFPs) kepada pemasok dan menilai tanggapan. Proses ini menegosiasikan pembelian tertentu dan permintaan order pembelian dikeluarkan. Proses ini bertemu langsung dengan proses CRM pemasok pada penjualan.

Resource Management in Telecommunication : OSSs (Operation Support Systems)

OSSs (Operation Support Systems)

Operation Support Systems (OSSs) adalah suatu sistem atau mekanisme yang dapat melakukan proses manajemen, inventori, masalah teknis, perencanaan, dan fungsi perbaikan bagi jaringan penyedia layanan. Tujuannya adalah agar perusahaan memiliki informasi yang lebih mudah diakses, penggunaan sumber daya lebih efisien, dan memberikan layanan yang baik bagi pelanggannya.

OSSs berkaitan dengan beberapa sistem lainnya, antara lain :

CSS (Customer Support System) : Sistem yang mengatur hubungan antara pelanggan dengan OSSs itu sendiri, sistem ini bisa diakses langsung oleh pelanggan.
BSS (Billing Support System) : Sistem yang mengatur jumlah dan ketentuan pembayaran yang nantinya harus dipenuhi oleh pelanggan. Menurut TOM (Telecommunications Operation Management), BSS seharusnya tidak mempunyai hubungan langsung dengan bagian lainnya karena tugas sistem tersebut hanya mengenerate billing pelanggan yang terdaftar.
ALPRO : Sistem ini terhubung dengan OSS sebagai bentuk fulfillment, assurance, dan billing dari OSS. Untuk beberapa layanan seperti SLI dan SLJJ, ALPRO terhubung langsung dengan BSS.
Sasaran perusahaan dengan adanya solusi OSSs, diantaranya :

a)    Peningkatan QoS (Quality of Service)

b)    Pengolahan data warehousing yang lebih efektif

c)    Operasional dan aliran informasi yang lebih efisien

d)   Fleksibilitas dalam penerapan teknolog